Reviews22 Aug 202512 min read

Claude vs GPT-4o vs Gemini 2: Enterprise LLM Comparison 2025

We tested the three leading LLMs on real enterprise tasks - document analysis, code review, data extraction, and customer support. Here's how they actually perform.

MB
Max Beech
Head of Content

Choosing between Claude, GPT-4o, and Gemini isn't straightforward. Benchmarks tell one story; real-world performance tells another. We ran extensive tests on enterprise use cases to help you make an informed decision.

Quick verdict

Use caseWinnerRunner-up
Document analysisClaude 3.5 SonnetGPT-4o
Code reviewClaude 3.5 SonnetGPT-4o
Data extractionGPT-4oClaude 3.5 Sonnet
Customer supportClaude 3.5 SonnetGemini 2 Pro
Long contextGemini 2 ProClaude 3.5 Sonnet
MultimodalGemini 2 ProGPT-4o
Cost efficiencyGemini 2 FlashGPT-4o-mini

Our recommendation: For most enterprise applications, Claude 3.5 Sonnet provides the best balance of capability, reliability, and instruction following. Use GPT-4o for structured extraction tasks. Consider Gemini 2 Pro for long-context or multimodal workloads.

Models tested

ModelProviderContextPrice (input/output)
Claude 3.5 SonnetAnthropic200K$3/$15 per 1M
GPT-4oOpenAI128K$2.50/$10 per 1M
Gemini 2 ProGoogle1M$1.25/$5 per 1M
Claude 3 OpusAnthropic200K$15/$75 per 1M
GPT-4o-miniOpenAI128K$0.15/$0.60 per 1M
Gemini 2 FlashGoogle1M$0.075/$0.30 per 1M

Testing conducted September 2025 with latest model versions.

Test methodology

We tested each model on five enterprise task categories:

  1. Document analysis: Contract review, report summarisation, compliance checking
  2. Code review: Bug detection, security analysis, refactoring suggestions
  3. Data extraction: Structured extraction from unstructured text
  4. Customer support: Response generation, escalation decisions, sentiment analysis
  5. Long context: Analysis requiring full document context

Each category included 50 test cases with human-evaluated ground truth. We measured accuracy, consistency, latency, and cost.

Document analysis

Test cases

  • 20 contract reviews (identify key terms, risks, obligations)
  • 15 report summarisations (executive summaries from 10-50 page docs)
  • 15 compliance checks (GDPR, SOC2, regulatory requirements)

Results

ModelAccuracyConsistencyAvg latency
Claude 3.5 Sonnet94.2%91%4.2s
GPT-4o91.8%88%3.8s
Gemini 2 Pro89.4%85%3.1s

Analysis: Claude excelled at following complex document analysis instructions. Its outputs were better structured and more consistent across similar documents. GPT-4o was faster but occasionally missed nuanced requirements. Gemini was quickest but showed more variance in output quality.

Claude advantage: Particularly strong at identifying implicit obligations and potential risks that weren't explicitly stated. Better at maintaining consistent output format across varied inputs.

Example output comparison

Task: Identify key payment terms in this contract.

Claude: Listed all payment terms with context, flagged unusual terms, noted missing standard clauses.

GPT-4o: Listed payment terms accurately but less contextual analysis.

Gemini: Occasionally missed complex conditional payment terms.

Code review

Test cases

  • 20 bug detection tasks (intentional bugs in Python, TypeScript, Go)
  • 15 security analysis tasks (OWASP vulnerabilities, injection risks)
  • 15 refactoring suggestions (code smell identification, improvement recommendations)

Results

ModelBug detectionSecurityRefactoring quality
Claude 3.5 Sonnet88%92%4.3/5
GPT-4o84%88%4.1/5
Gemini 2 Pro80%84%3.8/5

Analysis: Claude's code analysis was notably more thorough, often catching edge cases other models missed. It also provided clearer explanations of why code was problematic and how to fix it.

GPT-4o advantage: Faster at quick code completions and single-line fixes. Better at Go-specific idioms.

Security finding: All models occasionally missed subtle injection vulnerabilities. Don't rely on any LLM as your sole security review.

Example: Race condition detection

// Buggy code presented
async function updateBalance(userId: string, amount: number) {
  const user = await db.users.findOne(userId);
  user.balance += amount;
  await db.users.save(user);
}

Claude: Identified race condition, explained the TOCTOU vulnerability, suggested atomic update with findOneAndUpdate.

GPT-4o: Identified race condition, suggested fix but explanation was less complete.

Gemini: Missed the race condition in 3/5 attempts.

Data extraction

Test cases

  • 20 invoice extractions (varied formats, handwritten elements)
  • 15 resume parsing (structured data from unstructured CVs)
  • 15 form extractions (mixed format business forms)

Results

ModelAccuracySchema complianceHallucination rate
GPT-4o96.2%99%1.2%
Claude 3.5 Sonnet94.8%97%2.1%
Gemini 2 Pro92.4%95%3.4%

Analysis: GPT-4o's structured output mode with JSON schemas produced the most reliable extractions. Nearly perfect schema compliance with minimal hallucination.

GPT-4o advantage: Native JSON mode with strict schema enforcement reduces post-processing. Particularly strong on tabular data extraction.

Claude caveat: Excellent accuracy but occasionally adds explanatory text when you want pure JSON. Requires explicit "output JSON only" instructions.

Extraction code comparison

// GPT-4o with structured outputs
const result = await openai.chat.completions.create({
  model: 'gpt-4o',
  response_format: {
    type: 'json_schema',
    json_schema: invoiceSchema
  },
  messages: [{ role: 'user', content: `Extract: ${document}` }]
});
// Result always matches schema

// Claude approach
const result = await anthropic.messages.create({
  model: 'claude-3-5-sonnet',
  messages: [{
    role: 'user',
    content: `Extract as JSON only, no explanation: ${document}`
  }]
});
// Usually matches but occasional extra text

Customer support

Test cases

  • 20 response generation tasks (varied customer inquiries)
  • 15 escalation decisions (when to involve human agents)
  • 15 sentiment analysis with appropriate tone matching

Results

ModelResponse qualityEscalation accuracyTone appropriateness
Claude 3.5 Sonnet4.6/594%96%
Gemini 2 Pro4.3/588%92%
GPT-4o4.2/586%90%

Analysis: Claude produced the most natural, empathetic responses. Better at matching customer tone and de-escalating frustrated users. Escalation decisions were more nuanced.

Claude advantage: Superior instruction following means Claude reliably maintains brand voice and handles edge cases gracefully. Less likely to make promises outside policy.

Gemini strength: Faster response times, slightly lower cost. Good choice for high-volume, simpler support queries.

Handling difficult customers

Scenario: Angry customer demanding refund outside policy window.

Claude: Acknowledged frustration, explained policy clearly, offered alternatives, maintained professional empathy throughout.

GPT-4o: More formulaic response, occasionally made borderline policy exceptions without explicit instruction.

Gemini: Generally good but occasionally matched angry tone inappropriately.

Long context performance

Test cases

  • Analysis of 50K+ token documents
  • Information retrieval from different document sections
  • Synthesis across entire document length

Results

ModelContext lengthQuality at 50KQuality at 200KQuality at 500K
Gemini 2 Pro1M94%92%88%
Claude 3.5 Sonnet200K95%91%N/A
GPT-4o128K93%N/AN/A

Analysis: Gemini's 1M context window is genuinely useful for very long documents. Quality degrades more gracefully than competitors at extreme lengths.

Gemini advantage: For documents exceeding 200K tokens, Gemini is the only viable choice. Quality remains acceptable even at 500K tokens.

Practical note: Most enterprise documents fit within 128K tokens. The ultra-long context is valuable for specific use cases (codebase analysis, legal discovery, research synthesis).

Cost analysis

Per-task costs

Task typeClaudeGPT-4oGemini
Document analysis$0.12$0.08$0.04
Code review$0.18$0.12$0.06
Data extraction$0.08$0.06$0.03
Support response$0.04$0.03$0.02

Monthly projection (10K tasks)

ProviderMonthly costQuality score
Claude 3.5 Sonnet$1,20093%
GPT-4o$80090%
Gemini 2 Pro$40087%

Trade-off: Claude costs ~50% more than GPT-4o and ~3x more than Gemini, but delivers measurably better results for most tasks. The ROI depends on your quality requirements.

Budget-optimised strategy

Use model routing to minimize costs while maintaining quality:

function selectModel(task: TaskType, priority: Priority): Model {
  if (priority === 'cost') {
    return 'gemini-2-flash';
  }

  switch (task) {
    case 'extraction':
      return 'gpt-4o';  // Best accuracy
    case 'analysis':
    case 'support':
    case 'code-review':
      return 'claude-3-5-sonnet';  // Best quality
    case 'long-context':
      return 'gemini-2-pro';  // Best context length
    default:
      return 'gpt-4o';
  }
}

Reliability and availability

Uptime (past 90 days)

ProviderUptimeMajor incidentsAvg response time
Anthropic99.92%12.1s
OpenAI99.88%21.8s
Google99.95%01.5s

All providers offer enterprise SLAs. Google showed the highest raw availability; OpenAI had the fastest response times; Anthropic had the fewest quality degradation incidents.

Rate limits

ProviderFree tierPay-as-you-goEnterprise
Anthropic5 RPM4,000 RPMCustom
OpenAI3 RPM5,000 RPMCustom
Google15 RPM1,000 RPMCustom

OpenAI offers the highest default rate limits. Google's limits are more restrictive but sufficient for most workloads.

Enterprise features

FeatureClaudeGPT-4oGemini
SOC 2YesYesYes
HIPAAYesYesYes
GDPRYesYesYes
Data retention opt-outYesYesYes
Fine-tuningComingYesYes
Dedicated capacityYesYesYes
Prompt cachingYes (90% off)Yes (50% off)Yes (75% off)
Batch APIYesYesYes

All three providers offer enterprise-grade compliance and security. Feature parity is high; the differences are in execution quality and pricing.

Recommendations by use case

Document-heavy workflows

Winner: Claude 3.5 Sonnet

Superior instruction following and output consistency make Claude the best choice for contract analysis, compliance review, and report generation.

Structured data extraction

Winner: GPT-4o

Native JSON mode with schema enforcement produces the most reliable extractions with minimal post-processing.

Customer support automation

Winner: Claude 3.5 Sonnet

Better tone matching, more natural responses, and more nuanced escalation decisions.

Code analysis and review

Winner: Claude 3.5 Sonnet

More thorough analysis, better explanations, catches more edge cases.

Long document analysis

Winner: Gemini 2 Pro

1M token context window is unmatched. Essential for legal discovery, codebase analysis, or research synthesis.

Cost-sensitive high-volume

Winner: Gemini 2 Flash

Best price-to-performance for simpler tasks. Use for classification, simple extraction, and high-volume processing.

Multimodal applications

Winner: Gemini 2 Pro

Native multimodal capabilities with strong image and video understanding.

Our verdict

For enterprise applications, Claude 3.5 Sonnet is our default recommendation. The combination of superior instruction following, consistent output quality, and thoughtful safety features makes it the most reliable choice for business-critical applications.

Use GPT-4o for structured extraction and when speed matters more than nuanced analysis. Use Gemini 2 Pro for long-context workloads and multimodal applications.

The "best" model depends on your specific requirements. Test with your actual tasks before committing. All three are capable enterprise tools - the differences are in degree, not kind.


Further reading: