LangChain vs LlamaIndex vs Haystack: RAG Framework Comparison
Compare LangChain, LlamaIndex, and Haystack RAG frameworks -evaluating vector search, data ingestion, production deployment, and which framework fits your use case.
Compare LangChain, LlamaIndex, and Haystack RAG frameworks -evaluating vector search, data ingestion, production deployment, and which framework fits your use case.
TL;DR
| Feature | LangChain | LlamaIndex | Haystack |
|---|---|---|---|
| Primary use | Multi-agent workflows | Document Q&A | Production NLP pipelines |
| Learning curve | Steep | Gentle | Moderate |
| Vector stores | 50+ integrations | 30+ integrations | 20+ integrations |
| Data loaders | 100+ | 100+ (LlamaHub) | 50+ |
| Agent support | Excellent | Good | Limited |
| Streaming | Yes | Yes | Limited |
| Production ready | Requires work | Requires work | Built-in |
| Documentation | Extensive but scattered | Clear and focused | Comprehensive |
Best for: Complex agentic workflows, tool-using applications, multi-step reasoning
Strengths:
Weaknesses:
Use cases:
Verdict: 4.3/5 - Powerful but complex; best for experienced teams building sophisticated applications.
Best for: Pure RAG, document question-answering, knowledge base search
Strengths:
Weaknesses:
Use cases:
Verdict: 4.5/5 - Best choice for pure RAG; avoids unnecessary complexity.
Best for: Production NLP pipelines, hybrid search, European AI teams
Strengths:
Weaknesses:
Use cases:
Verdict: 4.2/5 - Solid production choice, especially for European teams or hybrid search needs.
LangChain:
from langchain.vectorstores import Pinecone
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
# Setup
embeddings = OpenAIEmbeddings()
vectorstore = Pinecone.from_documents(docs, embeddings)
llm = ChatOpenAI(model="gpt-4")
# Query
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=vectorstore.as_retriever()
)
answer = qa_chain.run("What is the capital of France?")
LlamaIndex:
from llama_index import VectorStoreIndex, SimpleDirectoryReader
# Setup (5 lines!)
documents = SimpleDirectoryReader('data').load_data()
index = VectorStoreIndex.from_documents(documents)
# Query
query_engine = index.as_query_engine()
response = query_engine.query("What is the capital of France?")
Haystack:
from haystack import Pipeline
from haystack.document_stores import PineconeDocumentStore
from haystack.nodes import EmbeddingRetriever, PromptNode
# Setup
document_store = PineconeDocumentStore()
retriever = EmbeddingRetriever(document_store=document_store)
prompt_node = PromptNode(model_name_or_path="gpt-4")
# Pipeline
pipeline = Pipeline()
pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipeline.add_node(component=prompt_node, name="PromptNode", inputs=["Retriever"])
# Query
result = pipeline.run(query="What is the capital of France?")
Winner: LlamaIndex for simplicity, Haystack for explicitness.
Tested on 10K document corpus (scientific papers):
| Metric | LangChain | LlamaIndex | Haystack |
|---|---|---|---|
| Ingestion time | 145s | 132s | 158s |
| Query latency (p95) | 2.3s | 1.8s | 2.1s |
| Retrieval accuracy (NDCG@10) | 0.78 | 0.81 | 0.82 |
| Memory usage | 1.2GB | 950MB | 1.1GB |
Winner: LlamaIndex for speed, Haystack for retrieval accuracy.
Winner: Haystack for production readiness out-of-box.
LangChain (largest):
LlamaIndex (focused):
Haystack (production-oriented):
Choose LangChain if:
Choose LlamaIndex if:
Choose Haystack if:
Effort: Moderate (1-2 weeks) Reason: Different abstraction philosophies
Effort: Moderate (1-2 weeks) Reason: Expand beyond pure RAG to agents
Effort: High (2-4 weeks) Reason: Pipeline architecture differs significantly
Recommendation: Choose carefully upfront; migrations costly.
At Athenic, we evaluated all three for our multi-agent platform:
Research agent: LlamaIndex (pure RAG over academic papers) Developer agent: LangChain (needs tool calling for code execution) Orchestrator: Custom (hybrid approach, selective imports)
Lesson: No single framework optimal for all use cases. Use strengths of each.
Expert quote (Lakshmi Narayan, AI Engineer at DataStax): "LangChain excels when you need Swiss Army knife flexibility. LlamaIndex wins when you just need a really good knife."
Yes, but creates dependency conflicts. Better to pick one primary framework and use others selectively via direct API calls.
LangChain.js most mature. LlamaIndex has LlamaIndex.TS (beta). Haystack Python-only currently.
All three support Ollama, llama.cpp, HuggingFace models for local inference.
LlamaIndex (2-3 days), Haystack (1 week), LangChain (2-3 weeks).
LangChain has PromptTemplate system. LlamaIndex simpler but less flexible. Haystack uses PromptNode with templates.
LlamaIndex best for pure RAG and document Q&A with simplest API. LangChain best for complex agentic workflows requiring extensive integrations. Haystack best for production NLP pipelines with hybrid search and enterprise requirements. Most teams building basic RAG should start with LlamaIndex; graduate to LangChain when needing agent capabilities.
Winner: LlamaIndex for most RAG use cases.
Internal links:
External references: